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A crucial diamide diamine intermediate in the synthesis of tetradentate macrocyclic tetraamide ligands protected against oxidative decomposition
has been synthesized without the use of potentially hazardous organic azide intermediates. This intermediate has also been used to synthesize

a new class of pentadentate macrocyclic tetraamide ligands.

Since the potential importance to inorganic chemistry of
macrocyclic tetraamide ligands protected against oxidative
decomposition was first demonstratethese ligands have

homogeneous catalystRecent work has demonstrated the
utility of these catalysts in the important emerging field of
green chemistry (bleaching and pulp and paper applications).

been used to synthesize a variety of rare or unprecedented We have been working to produce expanded macrocyclic
oxidation states, geometries, and spin states of chromium,tetraamide ligands for possible use with lanthanides and for
manganese, iron, cobalt, nickel, and copeWhen atwo-  multimetallic applications. In the process of solving difficul-
step route to these macrocycles that did not involve organicties we encountered in synthesizing a new class of tractable
azides was developédransition metal complexes of these pentadentate macrocyclic tetraamide ligands, we have gener-

ligands suddenly had the potential to become valuable
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ated a valuable, convenient new method for synthesizing synthesis patent literatufeand it allows us to generate a
tetradentate macrocyclic tetraamide ligands. very reactive acylating agent (the acid chloride), using the
Our synthesis ob (R = Me) proceeded by an organic proton as a protecting group. As an example (Scheme 2),
azide route to the diamide diamine intermeditScheme
1). This route to4 was known from prior work2

Scheme 2. Synthesis of a Key Diamide Diamine Intermediate
- and lts Conversion to Tractable Macrocyeles

Scheme 1. Synthesis of an Intractable Macrocycle via an Old
Azide Routé
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alLegend: (a) PGI(1 equiv), 2-oxazolidone (2 equiv), MeCN,

aLegend: (a—c) 2-bromoisobutyryl bromide, then Nakhen room temperature, 12 h; (I6)is added to the P@R-oxazolidone
H,, Pd/C (see refs 1b and 2f); (d) product quite insoluble, yield mixture and stirred, room temperature, 12 h, 92%; (c) solution of
undetermined, product identified by FAB MS. 1,2-phenylenediamine and pyridine (2.2 equiv) slowly added (2 h)
to suspension of acid chloride (2 equiv), &b, room temperature,
12 h, 42%, see ref 8; (d) diethylmalonyl dichloride, &Hp, 25%
(procedure similar to that in refs 1b and 2f); (e) 2,6-pyridinedicar-
bonyl dichloride, THF, 55%, see refs 9 and 13.

Unfortunately,5 (R = Me) is sparingly soluble in DMSO
and DMF and is insoluble in other common lower boiling
organic solvents. Conceptually, greater organic solubility

could be designed into the molecule in three places: by pcy was stirred with 2-oxazolidone, followed by the addition
varying the aromatic ring substituents, by varying the R 4 1_gmino-1-cyclohexanecarboxylic acié)( The resulting

groups, or by varying the substituents on the pyridine ring. g5t 7 is easily isolated by filtration and is used as is, even
Increasing the size of the R groups destroys the viability of th4,gh it is slightly contaminated with 2-oxazolidone. Slow

the azide route. Efforts to synthes@¢R = Pr) viathe azide  4qgition of 1,2-phenylenediamine yields the diamide diamine
route were thwarted by considerable elimination. product8.2 Addition of diethylmalonyl dichloride give®

Iq the redesign of th'e synthesis, we recqgnized that iF IS in 25% yield (the NMR, electrospray MS, and IR data for
desirable to employ highly reactive acylating agents With s compound are identical with the data for the same

1,2-phenylenediamines, since the production of benzimida- compound produced by the patented mettéd

zoles can be a competing side reaction even with acid ¢ ghoyid be noted that this synthetic method holds great
chlorides? Indeed, 1,2-phenylenediamines that are even omise for introducing chirality into the macrocyclic tet-

weakly deactivated by other substituents on the benzene ring ;5 mide ligands viau-disubstituted amino acids bearing

often yield benzimidazoles exclusively when acylation is jgferent R groups. Furthermore, recent research has revealed

attempted with reagents less active than acid chlofid®ss ¢ although the metalated macrocyclic tetraamide ligands
factor renders much of the protected amino acid coupling 4re extraordinarily robust under oxidizing conditions, high-

technology developed for biochemistry inapplicable to mac- | 5ient iron-oxo species formed from these macrocycles
rocyclic systems such & 9, and10. Clearly,5, 9, and10

are conceptually composed of 1,2-phenylenediamine, 2 equiv  (7) palomo Coll, A. L.; Meseguer, J. D. U.S. Patent 4 230 849, 1985.
of an amino acid, and either 2,6-pyridinedicarboxylic acid  (8) Characterization 08: *H NMR (in CDCl) 6 1.3—2.2 (m, 20H,
diethvl lonic acid cyclohexane H)_, 2.15 (br s, 4H, amine H), 7.15 (m, 2_H, aromatic H), 7.65
or dietnyimaloni 1a. o ] ) ) (m, 2H, aromatic H), 9.95 (s, 2H, amide H}C NMR (in CDCk) 6 21.4
Our new method of synthesizing these crucial diamide (cyc)lohexa(ne Cﬁ or c-4),25).0 (cyclo(hexane C-3or c-4),)34.5 (cyc(lohexane
NG ; ; ; ShiAt C-2), 58.0 (cyclohexane C-1), 124.4 (aromatic C-3 or C-4), 125.6 (aromatic
diamine intermediated,and8, is derived from the antibiotic C-3'6r C-4), 130.5 (aromatic C-1). 176.5 (carbonyl C): NMR assignments
confirmed by CH correlation spectra, edited DEPT, and 2D COSY NMR;
IR (Nujol) # (cm™) 3409, 3324, 3201, 1654, 1590; electrospray MS
(6) Keech, J. T. Ph.D. Dissertation, California Institute of Technology, (positive ion modem/z358.49 (M+ 1, 100%). Anal. Calcd for diamide
Pasadena, CA, 1986. diamine: C, 67.01; H, 8.44; N, 15.63. Found: C, 66.95; H, 8.40; N, 15.56.
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ultimately decompose slowly via intramolecular hydrogen for the amide protons, indicating that they are in close
atom abstraction from the methylene carbon of the diethyl- proximity to each other. Not only is the geometric proximity
malonamide unif? Substitution chemistry at this site has of the amide protons consistent with a hydrogen bond
already generated even more robust catalyst systefie template in the final coupling reaction, the pentadentate
prior non-azide route involves coupling 2 equiv of amino tetraamide macrocycles do not exhibit a change in'the
acid with diethylmalony! dichloride to generate a diamide NMR in the presence of strong acids, indicating that the
dicarboxylic acid, which is then coupled with a 1,2- pyridine ring is extraordinarily difficult to protonate.
phenylenediamine derivative to yield prodétiarge amounts Not only is10 stable in concentrated acid, it is also base-
of pyridine solvent are used in both steps. Our new synthetic Stable. Addition of 4 equiv of LDA removes the amide
route promises to make the systematic exploration of the Protons and generates a lithiated tetraanion which we have
effect of varying the malonamide groups more efficient and characterized by NMR in THigs and DMSO-d. Addition
more economical. We anticipate that the prior method and of water to the Iithi_ated tetraanip_n quantitqtiyely regenerates
our new method will ultimately be complementary in terms 10. We are surveying the reactivity of the lithiated tetraanion

of commercial applicability; i.e., each method appears to have With transition metals and with the lanthanide series of
complementary strengths and limitations. trications. Coordinating the organic amiibligand to a

lanthanide series trication would not only have significant
implications for the fundamental coordination chemistry of
the lanthanides but could also, depending on hydrolytic

Reaction of the diamide diamine intermedi&teith 2,6-
pyridinedicarbonyl dichloride yields a new class of penta-
) ) o i
dentate tetraamide macrocycles in a remarkable 55% y'e.ldstability, have significance to the field of MRI contrast
(Scheme 29.Just as one class of the tetradentate macrocyclic agents
tetraamide ligands appears to be templated by a hydrogen '
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